A palavra Deus, para mim, é nada mais que a expressão e produto da fraqueza humana; a Bíblia, uma coleção de lendas honradas, mas ainda assim primitivas, que são bastante infantis.

— Albert Einstein

sexta-feira, 1 de abril de 2011

Argumentos da teoria evoluciontista que evidenciam a evolução das espécies.


Anatomia comparada

Ao analisar as diferentes espécies, podemos observar que estas apresentam estruturas semelhantes ou membros com a mesma função. A observação destes caracteres veio apoiar as ideias evolucionistas, pois este facto demonstra uma origem comum de diferentes espécies.

Estruturas homólogas

São estruturas que se podem encontrar em diferentes espécies e que apresentam:
Plano estrutural básico semelhante, ou seja, a forma destas estruturas é muito semelhante (por exemplo, um braço de um humano e a asa de uma ave)
Posição relativa a outras estruturas é semelhante, isto é, o local no organismo onde se encontram determinadas estruturas homólogas, em espécies diferentes, é mais ou menos o mesmo (temos o caso do local onde se localiza a cabeça, a qual se encontra quase sempre acima do resto do corpo)
Provêm do mesmo esboço embrionário, uma vez que o local, no embrião, onde se localizam as células que irão dar origem a estruturas homólogas, em espécies diferentes, é o mesmo;
Antepassado comum próximo, pois, como irá ser esclarecido estas estruturas provêm de espécies que divergiram devido a diferentes pressões selectivas;
Funções diferentes, isto é, estruturas que apresentam todas as características descritas em cima podem ter diferentes funções, embora geralmente essas funções sirvam o mesmo objectivo (por exemplo, as patas de um cavalo e as asas de uma ave: têm funções diferentes, respectivamente andar e voar; no entanto o seu objectivo é o mesmo e trata-se da locomoção)
Evolução divergente; isto é, devido às diferentes espécies terem sido sujeitas a pressões selectivas (conjunto de factores que condicionam a vida dos indivíduos e que os obrigam a evoluir em determinada direcção) diferentes, adaptaram os seus membros àquilo a que eles eram mais necessários no ambiente em que determinada espécie se encontrava.
A partir destas estruturas podem criar-se séries filogenéticas (através da análise de determinadas estruturas em espécies diferentes mas que sofreram a mesma evolução até determinada altura) que são progressivas quando determinada estrutura evolui desenvolvendo-se, ou regressivas, quando uma estrutura evolui, tornando-se mais simples (temos o caso do coração como uma série filogenética progressiva, pois nos mamíferos é mais complexo que nos peixes).

Estruturas análogas

Estas estruturas encontram-se em espécies cujo antepassado comum se encontra muito distante, pelo que o seu grau de parentesco é muito baixo.
Elas apresentam:
  • Padrão estrutural básico diferente, pelo que a forma das estruturas não é semelhante
  • Posição relativa a outras estruturas pode não ser semelhante
  • Provêm de um esboço embrionário diferente
  • Antepassado comum muito longínquo
Evolução convergente, uma vez que, devido a estarem sujeitas às mesmas pressões selectivas, as soluções que a Natureza arranjou para a adaptação das diferentes espécies, são muitas vezes as mesmas. Assim, espécies de origens muito diferentes podem apresentar estruturas que desempenham as mesmas funções. (Temos o exemplo das asas das aves e as asas dos insectos)

Estruturas vestigiais

Estas tratam-se de estruturas análogas às que se apresentam bastante desenvolvidas em algumas espécies, mas que, devido ao desuso e, portanto, à falta de necessidade noutras espécies, se atrofia e não se desenvolve. (Temos o exemplo do ceco, que é muito desenvolvido em animais que ingerem muita celulose - pois a função do ceco é a degradação desta - e pouco desenvolvido naqueles que a não ingerem; temos também o exemplo dos músculos das orelhas no humano, que se tornaram desnecessários à medida que a visão se foi aperfeiçoando)
Estas estruturas são um forte argumento do evolucionismo, pois mostram que os antepassados das espécies que apresentam estas estruturas necessitaram delas, e que depois estas se tornaram desnecessárias.

Argumentos Paleontológicos

A paleontologia, estudo dos fósseis, é um dos factores que mais apoiam o evolucionismo, pois mostra que o nosso planeta foi habitado por seres diferentes dos actuais. Infelizmente, o que gerealmente ocorre é que apenas os componentes esqueléticos dos indivíduos ficam gravados nas rochas. Para que todo o organismo seja preservado é necessário que, após a sua morte fique totalmente soterrado por sedimento, evitando a decomposição.
A análise dos estratos sedimentares permite reconstruir a história evolutiva de determinado local. A história evolutiva dos seres vivos pode ser dada por árvores filogenéticas, que se tratam de diagramas ramificados, que se iniciam num ancestral,comum, ocorrendo que cada ramo corresponde ao aparecimento de uma nova forma.
A prova da existência de seres vivos cada vez mais complexos é-nos dada através das formas intermédias ou sintéticas, que documentam a transição entre dois grandes grupos e se encontram nas formas fósseis de transição. Estes fósseis permitem afirmar que os grandes grupos de indivíduos (aves e répteis, p.e.) têm uma origem comum.

Argumentos da embriologia

Ao comparar os embriões das diferentes espécies, Haeckel pôde observar que, num estado muito prematuro, os embriões são extremamente semelhantes. À medida que os embriões se vão desenvolvendo, vão perdendo a sua semelhança com os embriões de outras espécies, sendo mais diferentes quanto menor for o seu grau de parentesco. Isto é, quanto maior for o grau de semelhança entre os embriões dos animais, maior o grau de parentesco ou filogenia.
Haeckel observou que todos os embriões possuiam fossetas braquiais que, enquanto nos peixes irão dar origem aos órgãos respiratórios, em outras espécies estas alteram-se de tal maneira que será difícil reconhecê-las no indivíviduo adulto. Haeckel notou também na existência de cauda em todos os vertebrados que, nos humanos, desaparece.
Todas estas observações levaram Haeckel a concluir que o embrião de determinada espécie passa por todos os estados adultos dos seus antepassados. Se considerarmos que a ontologia é a história do desenvovimento embrionário até ao estado adulto de um indivíduo, e a filogenia é a história evolutiva de determinada espécie, poderíamos afirmar que Haeckel considerou que a ontologia recapitula a filogenia. Esta é a chamada lei da recapitulação.
No entanto, esta lei foi, mais tarde, revista por Von Baer, o qual lhe acrescentou que o embrião passava por todos os estados embrionários dos seus antepassados, e não pelos estados adultos, como Haeckel afirmou. Esta lei passou a chamar-se lei biogenética.
A embriologia veio fornecer um modo de estabelecer o grau de parentesco entre determinadas espécies, pois quanto mais afastados filogeneticamente estiverem 2 indivíduos mais curtas são as fases ontogénicas comuns. Assim, os seres mais aparentados apresentam longas fases ontogénicas semelhantes.

Argumentos biogeográficos

Estes argumentos dizem respeito às populações existentes em diferentes locais geográficos. Embora ocorra frequentemente que as populações apresentam mais diferenças quanto mais afastadas geograficamente se encontram, apesar de muitas vezes as pressões selectivas serem semelhantes, ocorre também a existência de organismos semelhantes em regiões geográficas muito diferentes. Ocorre também que indivíduos que vivam em regiões muito próximas sejam muito diferentes.
As diferenças biogeográficas ocorreram devido à deriva dos continentes, a qual separou indivíduos da mesma espécie, que evoluiram dando origem a diferentes espécies, cada uma adaptada ao ambiente onde viveram.

Argumentos citológicos

O facto de todos os seres vivos serem constituídos por células, as quais possuem funções muito semelhantes veio apoiar largamente uma origem comum. Assim, apesar das diferenças que podem ser observadas a nível macroscópico, se analisarmos o mundo vivo a nível microscópico, podemos concluir que não há grandes diferenças entre os seres vivos.

Argumentos bioquímicos

Ao analisar os componentes químicas das várias espécies podemos notar que quanto mais semelhante for a sua constituição química, maior o grau de parentesco ou filogenia que pode ser estabelecido. Pode considerar-se como argumento bioquímico:
O fato de todos os seres vivos serem constituídos principalmente pelas biomoléculas: lípidos, prótidos e glícidos, ácidos nucleicos...
A existência de DNA e RNA e sua intervenção na síntese proteica
A universalidade do código genético, o qual é constituído, para quase todos os seres, por cinco bases, cujas combinações podem dar origem a diferentes proteínas
O facto de existirem 20 aminoácidos nos seres vivos

Análise de proteínas

As diferentes proteínas são agrupamentos de aminoácidos arranjados com uma determinada ordem, a qual está definida no DNA. Assim, uma proteína que tenha determinada ordem de aminoácidos será diferente de uma outra que possua uma outra ordem.
Frequentemente encontra-se em diferentes espécies proteínas iguais, mas com apenas alguns aminoácidos trocados, isto é, proteínas em que a sequência de aminoácidos é a mesma excepto para dois ou três casos. Isto ocorre devido a mutações que o DNA sofreu, as quais são lidas pelo RNA, sendo este quem vai transmitir a informação para que a proteína seja sintetizada. Deste modo, e uma vez que cada 3 bases do DNA vão dar origem a um aminoácido, uma alteração de uma dessas bases, ou de mais, poderá dar origem a um novo aminoácido. Isto leva a crer que as proteínas tiveram origem num ancestral, e que se foram alterando, depedendo da evolução sofrida pelos indivíduos.
A partir disto pode afirmar-se que quanto maior for a semelhança entre as proteínas de indivíduos de diferentes espécies, maior é também o grau de parentesco.
Dois dos casos mais estudados são o da insulina (hormona produzida no pâncreas que controla a quantidade de açúcar no sangue), que possui 51 aminoácidos, dos quais o 8, 9 e 10 podem variar entre alanina e treonina (8); serina e glicina (9); e valina e isoleucina (10), conforme a alteração sofrida pelo DNA. O outro caso comum é o citocromo c, presente na cadeia transportadora de electrões, a partir do qual se pode construir um esquema que relacione as diferentes espécies conforme a quantidade de aminoácidos diferentes. Em tal esquema, os espécies teriam um maior grau de filogenia quanto maior fosse o número de semelhanças entre os aminoácidos.

Comparação entre moléculas de DNA - hibridação

Como já foi referido, o DNA, ao longo dos tempos vai sofrendo alterações a nível das suas bases. Embora a maioria das mutações que ocorram no DNA sejam maléficas, existem algumas que são benéficas, e outras que não alteram as proteínas. Isto é, embora muitas vezes a ocorrência de uma mutação traga problemas adaptativos, por vezes a alteração das "ordens" do DNA fazem mais sentido do que aquelas originais. São estas alterações que são passadas aos descendentes e prosperam.
A dupla cadeia de DNA está ligada através de pontes de hidrogénio, que se estabelecem entre as bases dos nucleótidos, ocorrendo que estas ligações apenas acontecem entre bases complementares, isto é, timina-adenina; citosina-guanina. Deste modo, se ocorre uma mutação numa das cadeias, a ponte de hidrogénio entre o nucleótido mutado e o da outra cadeia não se vai estabelecer. É através da análise da quantidade de DNA que não emparelha, ou se liga, que se pode calcular a diferença existente entre dois DNA.

Mas como é possível fazer tal medição?

I - Cultivam-se células num meio com um componente que faça parte do DNA (como o fósforo, ou o azoto) radioactivo. Deste modo, as células vão incorporar este componente no seu DNA, marcando-o;
II - Depois de extraído das células, este DNA é cortado em segmentos mais curtos;
III - Os vários segmentos são aquecidos de forma a quebrar as pontes de hidrogénio e a separar as duas cadeias;
IV - Seguidamente o DNA marcado é misturado com porções de DNA de outra espécie não marcado
V - Arrefece-se de modo a permitir as ligações entre as bases das duas cadeias de DNA
VI - Retiram-se as cadeias de DNA que não emparelharam
VII - Aquece-se de novo as novas duplas cadeias de DNA, de modo a quebrar as ligações. Quanto maior for a energia necessária para separar as duas cadeias, menos bases que não emparelharam há, portanto mais próximas estão as espécies.

Testes serológicos

As células dos animais encontram-se revestidas por antigenes. Por outro lado, os animais possuem ainda anticorpos, os quais não se ligam aos antigenes das células do organismo a que pertencem, embora se liguem aos antigenes das células estranhas ao organismo, atacando-as e tornando-se inofensivas. Quanto maior for a diferença entre os antigenes de duas espécies, menos é o grau de parentesco, e com maior feracidade são atacados pelos anticorpos da outra espécie.
Fonte: www.geocities.com

Nenhum comentário:

Postar um comentário